众所周知,人体没有办法完全愈合大规模的骨缺损,并且在大多数情况下,需要外部手术干预来恢复正常。目前临床上的常用的骨移植物材料有以下几种:自体骨,即材料取之于病人本人身体,是最理想的修复物,却存在二次伤害,多术区及供区并发症、来源不足等问题;异体骨,多来自尸体捐献或是动物,存在免疫反应、潜在感染风险及伦理道德的问题。
图1:不同后续工艺工艺及不同组分的
3D打印人工骨支架的力学性能及生物性能
在此背景下,3D打印人工骨支架成为了相关科研工作者的研究热点。由于此项技术能够直接制造具有设计形状,受控化学性质和互连孔隙的多孔支架,已然成为制造骨修复材料的不二选择。本文将结合发表于Materials Today的一篇综述性文章《Bone tissue engineering using 3D printing》,介绍3D打印人工骨支架的最新进展、当前的挑战以及未来发展方向。
文章接着指出:低机械强度是多孔支架中的主要挑战,而优化的后续工艺方法和成分修改可以改进人工骨支架的力学性能。
图2:3D打印颅部结构及植入物结构示例
使用3D打印支架进行生长因子和药物递送也是一大研究热点。这种方法不仅相对于全身递送所需剂量减少,副作用大大减轻,还可控制药物的释放模式。文中总结出:支架孔径大小,连通性和几何形状是控制药物负载以及体内释放速率的有效参数。
文中着重介绍了3d打印人工骨技术现阶段的挑战和未来发展方向,一针见血地指出来自粘结剂的残余物在烧结过程中可能难以去除。能否得到更高的精度和分辨率,制造更小的孔径,取决于粉末特性和构建参数。并且3D打印人工骨始终需要后续工艺,如在高温下烧结或致密化。烧结过程中,整体收缩具有不均匀性,会导致部件大量开裂并使其没有办法使用。由于这一缺陷,使用3D打印真正模拟出前述松质骨和皮质骨共存的结构非常困难。另一个后续工艺挑战是从部件内的互连孔隙中去除松散的粉末,孔内的残留粉末可能与多孔部分烧结,使其与设计部分的相互连接较少,并进一步减小烧结后孔的尺寸。
图3: 基于3D打印人工骨支架的药物释放研究
由于能够针对病人特定缺陷和特定临床需求进行订制,因此未来这一领域对3D打印技术的需求将不断增加。针对人工骨3D打印,需要注意的最关键问题是多孔支架的机械性能。然而增加孔隙率将降低支架的强度,但使用可降解的聚合物渗透以增强这些支架的强度和韧性是解决该问题的一种方法。其次,印刷活细胞或添加生长因子/药物治疗将是另一个颇具前景的研究方向。文中最后指出,虽然目前的技术让我们建立了与组织相似的结构,但我们距离完全打印功能组织还有很长的路要走。在该方向上需要更多的过程-性质优化,体外和体内研究、以继续推动骨组织工程的发展。